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Proof of Dynamical Scaling in Smoluchowski's 
Coagulation Equation with Constant Kernel 
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Smoluchowski's coagulation equation for irreversible aggregation with constant 
kernel is considered in its discrete version 

I--I  ~- 

C/= ~. Ci-kCk--2C/ ~ Ck 
k = l  k = l  

where c t=c t ( t )  is the concentration of/-particle clusters at time t. We prove 
that for initial data satisfying c~(0)> 0 and the condition 0 ~< ct(0)< A(I + z/)- i  
(A, A >0),  the solutions behave asymptotically like c l ( t )~  t-2?(It -~) as t--* oo 
with /t - j  kept fixed. The scaling function ?(~) is ( 1 / p ) e x p [ ( - l / p ) ~ ] ,  where 
P = ~.t Icl(O), a conserved quantity, is the initial number of particles per unit 
volume. An analogous result is obtained for the continuous version of 
Smoluchowski's coagulation equation 

-~c(v, t)= due(v -u ,  t)c(u, t ) -2e(v ,  t) duc(u, t) 

where c(v, t) is the concentration of clusters of size v. 

KEY WORDS: Smoluchowski's coagulation equations; dynamical scaling; 
cluster growth; kinetics of first-order phase transitions. 

1. I N T R O D U C T I O N  

In  the theory  of phase separa t ion  processes, cluster  dynamics  is based on  
kinet ic  equa t ions  which mode l  the detai led mechan i sms  leading  to the 
fo rma t ion  and  evo lu t ion  of clusters of molecules,  t1'2~ These are equa t ions  
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for the time evolution of variables ct(t) representing the average concen- 
trations of minority-phase clusters of size l at time t, which neglect some of 
the complications of real systems, such as grains, boundaries, and vacancies. 

The kinetic equation of Smoluchowski ~3"4~ 

1 - 1  

6l = ~ al-k.kCt-kCk--2 al.kCtCk (1) 
k = l  k = l  

models a process where two clusters of sizes k and l can coagulate to form 
a cluster of size k + 1, with a probability proportional to ak,~= a~.k > 0. In 
this model there is no fragmentation of clusters. This infinite system of non- 
linear ordinary differential equations is of interest in polymer science as a 
simple model for polymerization tSI and also in aerosol physics/6~ As Eq. (1) 
conserves the mass density p = ~ lc~(t) for all finite times if the coagulation 
rates akj do not grow too rapidly as k, 1--* ~ (see, for example, ref. 7), the 
model considered here can be classified as model B in the Hohenberg-  
Halperin scheme of dynamical phase transitions, tS~ 

The hypothesis of dynamical scaling ~t'2'9"1~ asserts that after a suf- 
ficiently long time t the cluster distribution c~(t) for the large clusters 
becomes independent of the initial distribution and approaches a distribu- 
tion which on suitable time and length scales has a self-similar profile, i.e., 

ct(t)~_tYg(lt-X), 1~oo ,  t - -*~  (2) 

where x and y are constants and ?(.)  is the so-called dynamical scaling 
function. This hypothesis is widely used for cluster models with a conserved 
order parameter. For aerosols, such as tobacco smoke, the hypothesis (2) 
is also known as Friedlander's self-similarity ansatz (see, for example, 
refs. 6 and 11 ). 

Although there exists experimental confirmation of the scaling 
hypothesis (2) (e.g., ref. 12) and evidence from computational and formal 
studies, ll.5.6.9-Jl,13 16) not very much is known from the rigorous point of 
view. t6~ Even though the conjecture of a self-similar cluster distribution (2) 
described only by a few macroscopic parameters (such as the mass density, 
for example) was formulated over 50 years ago by Schuhmann, ~13~ it has 
not been derived rigorously from Smoluchowski's kinetic equation (1). 

In this paper we give such a derivation for the special case where the 
coefficients ak.~ are independent of k and/.  On a time scale chosen to make 
ak.t = 1, Eq. ( 1 ) becomes 

~1 = ~ Cl-kCk--2Cl Ck (3) 
k = l  k = l  
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In this investigation we prove both for (3) and its continuous analog 

O--c(v'at t )=  f~ du c(v-u,  t)c(u, t ) -  2c(v, t ) f :  du c(u, t) (4) 

that Eq. (2) holds if the initial cluster distribution satisfies some mild condi- 
tions. Our results can be stated as follows: 

lim t%t(t) = ?(4) for (3) 
I , t  ~ cJo , I / t=~  

lim tZc(v, t) = ?(4) for (4) 
U , t ~ O O , V / t = ~  

with the dynamical scaling function ? given by 

~(r (5) 

2. THE DISCRETE CASE 

We first collect some properties of the solution of (3) which are known 
from the work of refs. 6, 7, and 17. 

P r o p o s i t i o n  I. Let the initial data for Eq. (3) have finite second 
moment, i.e., M z ( 0 ) = ~ = t l 2 c / ( O ) <  cx3. Then this equation has a unique 

- ~ 12ct(t) is solution, which is positive, and the second moment M2(t)-Z~= 
bounded on bounded intervals of the positive t axis. Moreover, the series 

n( t )=  ~ ct(t) (6) 
/ = 1  

p( t )=  ~. let(t) (7) 
l = l  

q~((, t )=  ~ (tcl(t) (8) 
I = 1  

where ~ is any complex number satisfying I~1 ~< 1, converge for all t and 
satisfy the equations 

d 
dtn(t)= - - I n ( t ) ]  2 (9) 

d 
~ p ( t ) = O  (10) 

Ot ~b((, t )=  [ r  t)] 2 -  2~b((, t)n(t) (11) 
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Proof. The existence, uniqueness, positivity, and absolute continuity 
of the solutions of (3) are proven, e.g., in ref. 7. As shown in ref. 17, these 
solutions have the following finite moment property for any p > 1: 

0<~ ~ lPcI(O)<oo==>O<~ ~. lPc,(t)<.Kp(t)<oo (12) 
I = 1  I = 1  

where the function K,(t) is bounded on any bounded interval of the t axis. 
With p set equal to 2, this property implies the desired result about M2(t), 
and also gives the following bound on the cl(t): 

K2(t) 
O<~cl(t)<~ l----- T -  (13) 

To prove (9) we consider the integrated version of (3), 

t I - - 1  ~ t  

c,(t)=c,(O) + ,  dr ~_, c ,_k( r )Ck(Z) - -2 ,  dr c,(r) /.., Ck(Z) (14) 
~0 k =  = 1  ~0 k = l  

Summing (14) over ! from 1 to N and taking the limit N ~  oo, we obtain, 
with the help of (13), the continuity of the c~(r) and Weierstrass' uniform 
convergence theorem, the result 

c/(t) = ct(0) + dr Ct_k(Z)Ck(Z) 
I = 1  I = 1  I = 1  k f f i l  

- 2 dr cl(r) Ck(r) 
/ f f i l  k = l  

= cl(O) - dz cl(z 
I f f i l  I 1 

After differentiation the first macroscopic equation (9) is obtained, since 
the integrands are continuous. Equation (10) can be proved by a similar 
method; we omit the proof since the same result has already been proved 
in ref. 7 for more general initial conditions. Equation (11 ) can be derived 
by analogous arguments. QED 

The following lemma gives information about the location of the roots 
of the equation ~(~) = n o + r, which will be needed for the main theorem. 

L e m m a  II. Let A, A be any positive numbers and let cl(0), c2(0) .... 
be a sequence satisfying 0 < c l ( 0  ), O<~ck(O)<~A(l+A) -k ( k =  l, 2,...). 
Furthermore, set no = Z,~=~Ck(O) and p = ~_,~=~kck(O) and define 

k = l  
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Define zl = ~(1 + A ) -  no, which is either a positive number  or + oo. Then 
the following statement holds true for the roots of the equation 
~b(() = n o +  ~ for given ~: 

1. For  all Te [0, T,) there is a simple root, call it (1(~), satisfying 

1 
1 ~ ~I(T) = 1 W -  z + R(2)( 'c )  < 1 -I-A (15) 

P 

where R~2~(r) = O(z 2) as z --* 0. 

2. All other roots (,,(~) (m = 2,...) lie outside the closed unit disk and 
are uniformly bounded away from it as z ~ 0; that is, there exist r2 e (0, zl) 
and f ie(0 ,  A) such that I~,.(~)1 > 1 + 6  ( m = 2 ,  3,...) for r e  [0, z2]. 

Proof. Define the function ~ b ( ( ) = ~ =  1 Ck(O)( k, analytic in I~1 < 
1 + A. As ~ increases from 1 to 1 + A the value of ~b(() increases from no to 
n o + z ~ ;  so for each z e [ 0 ,  z~) the equation O ( ( ) = n o + Z  has a unique 
positive solution, call it ~(z) ,  which is monotone  increasing in ~. 

Since the function ~b(() is analytic in a neighborhood of ~ =  1, we 
can apply the implicit function theorem, obtaining, since 

0 = d[no + z-(~(()]/dz I,=o = 1 - ~b'(1) d(/dz 1~=o = 1 - p  d(/dz 1,=o 

that 

= ~ +RI2~(r) 
P 

where R~21(z) = O(r 2) for ~ ~ 0. 
For  the other roots ~,,(z) (m = 2,...) the argument is as follows: since 

the function ~b(~)-n 0 is analytic in the open disk IGI < 1 + A, it has only a 
finite number  of zeros inside the smaller disk I~1 < 1 + ~/2. Moreover,  the 
only zero inside the closed unit disk is the one at ~ = 1, since ~ ~< 1 implies 

I~(OI = ~c,G' <,~c, lGl'<<.Y'c,=no 
/ I 

with equality if and only if ~ = 1. The rest of these zeros, which in the 
notat ion of the theorem are ~,,(0) (m---2, 3,...), lie in the annulus 1 < I~1 < 
1 +,~/2. Let the smallest of their moduli be 1 + 26. As r increases from 0 
these zeros move continuously (e.g., ref. 18), and so for sufficiently small z 
none of their moduli can be less than 1 + 6. Q E D  

Now we can state our  main result for the discrete case in the following 
theorem: 
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T h e o r e m  III.  For  all initial configurations satisfying the two con- 
ditions 

(i) 0 < cl(0) 

(ii) 3A, A > 0 : 0 < . c z ( 0 ) < . A / ( I + z l )  ~(l=1,2, . . . )  

the solution to (3) has the following asymptotic behavior as t ~  oo and 
l ~ ~ with lit = ~ > 0 fixed: 

lim t2cl(t) = ?(~) (16) 
I , t  ~ , ~ ,  1I t  = 

where the dynamical scaling function g(.): ~ + ---, R + is given by 

1 
g(~) = -  e. -II/p~r (17) 

P 

The convergence in (16) is uniform on compact  intervals of the positive 
axis. 

Proof. The initial conditions guarantee that Proposit ion I can be 
applied. Solving the macroscopic rate equations (9) and (10) with initial 
conditions n ( 0 ) =  no and p ( 0 ) =  p, we obtain 

1 
n ( t ) =  , p ( t ) = p  (18) 

nol + t  

Equation (11) for the generating function for ICI < 1 can also be solved 
explicitly subject to its initial condition ~(( ,  0 )=~b( ( )=Z~=~  (~c/(0), 15'61 
giving 

~(( ,  t) = t_z 1 ~b(() t > 0 ,  IC l< l  (19) 
(no+ t -1) no+  t - l - ~ b ( ( ) '  

By Proposit ion I, ~(( ,  t) is analytic in the unit disk of the ( plane, and so 
by Cauchy's integral formula and (8) we can express the solution of (3) as 

tZcl(t ) 1 1 ~r0 d( ~b(() (20) 
2~i n o + z (t+ 1 no + z - ~b(() 

where r means t -~ and Fo denotes the circle {(: I~l = to}  for some r o 
satisfying 0 < ro < 1. 

By condition (ii), ~b(() is analytic in the disk [~l < 1 +A,  and hence, by 
(19), ~(~, t) is analytic in this disk except for poles at the zeros of the 
denominator.  Defining (~(r), z2, and 6 as in Lemma II and setting z3 = 



Smoluchowski's Coagulation Equation 395 

~b(1 +6/4)-no>0, we can chose a positive number r4=min{z2, z3} such 
that 1 ~<G(r)< 1 +6/2 for rE [0, r4]. Hence we see that for r e  [0, r4] the 
only such pole inside the circle Ft = {~: t~[ = 1 + 6/2 } is at G(r). Deforming 
the contour of integration in (20), we obtain 

~ro d( ~(~) ~+ ' no + r - r 

f r  d( ~b(~) ~r d( ~(r) (21) 
= , ~ '+1 n o + r - ~ ( r  : r  n o + ~ - ~ ( r  

where F2 = {r J r  r = di/4} lies inside the circle FI for r e [0, r4-]. 
To estimate the first integral on the right, we define the function 

f(r r ) =  Ino+ r -~ ( r  By Lemma II this function is positive throughout 
the closed set {~, z: I~l = 1 + 3/2, 0 ~< z ~< t4 } because for t ~ [0, z4] the only 
root of f inside the circle F, is strictly less than 1 + 6/2. Since the function 
f is continuous, its infimum in this domain must be attained; and this 
infimum, which we denote by fm~,, is therefore positive: 

min min [no+r--q~(()[ = fmin>0  (22) 
reE0, r4] 1ff1=1+6/2 

Using this result and condition (ii)in (21), we obtain, since 5 < d, 

~r d~ ~b(~) ~<( 2x l ~ A ( l + 3 " ~ k  
, ~t +----~ no + z  ~-~( ~ ) 1 + 6) 'fmin k= ' \1 -+-~ , /  

2xA I 1 + 3 
(23) 

- ( 1  + 6)tfmin Z]--6  

provided that 0~<t - t = r =  ~/l<~r4. If ~ is restricted to some interval 
[~,, ~2], then (23) holds throughout that interval as soon as 1>1 ~2/r4, and 
so the integral approaches 0 as 1, t--* ~ ,  uniformly on this set of values 
for 4. 

The second contour integral can be evaluated by the residue theorem 
using l'H6pital's rule and Eq. (15) of Lemma II: 

1 ~r d~ ~b(~) [ I ~b(~) 1 
2x~ , ~'+1 no + r -  ~(~) = Resr162 ~'+' no +-z-~(~)_ ]  

= lim L #'+' 

1 ~b(~t (r ) )  
- ( 2 4 )  

[G ( r ) ]  ~+' -~'(~,(t)) 
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Now the result (15) in Lemma II implies that 

I~=~,=l+l~+R~2~(~ as l - -*~  GC~) p l  \ l )  with ~ = k  fixed (25) 

where, if r162  and l>/o for some positive /o, then IR~2~(~//)l<.~ 
K(~2/12), where K is a number depending on lo and r but not on ~ or L 
It follows that as l--* ~ the right-hand side of (24) approaches the limit 

[ +1  ~+R,2,(~)l-'-'_nOe_,,/p,r ~b(1) l i m  1 - (26) 
~ b ' ( 1 )  ~ p l  p 

and that the convergence is uniform in ~ on the set [ ~ ,  r 
Putting (23) and (26) into (21) and using (20) completes the 

proof. QED 

The condition on the exponential decay of the initial cluster distribu- 
tion and its derivatives is not restrictive from the physical point of view: 
usually the system does not contain any large clusters at all at time t = 0. 

That the dynamical scaling as stated in Theorem III does not hold for 
arbitrary initial data can be seen by the following example. Consider the 
pure monodisperse initial condition c,(O)=~.,,, for some integer m >  1. 
Then it can be shown by direct computation that the solution for this 
initial condition is 

{to-2(l + t-')-z/m-' if l/m~[~ 
c~ (t) = otherwise 

For these functions the limiting behavior stated in Theorem III does not 
hold. To see this, let I tend to ~ through a sequence { / i } ~  of integers 
that are not multiples of m. We have then c,,(t)= 0 for all i and therefore 
lim~ . . . . .  ~,/,=~ t2G(t)=O. But i f / t e n d s  to oo through a sequence {/[}, .~ 
that are multiples of m, then we obtain a different limit, namely 
expl- - (1 /m)~] .  Thus the limit discussed in Theorem III does not exist in 
this case. Notice also that in this case two poles move toward the unit 
circle as t --. ~ .  

3. THE C O N T I N U O U S  CASE 

As noted in ref. 19, following a suggestion of van Kampen, equations 
like (4) can be solved by the Laplace transform method. In the next 
proposition we show that the Laplace transform method can be applied 
rigorously. Proposition IV for the continuous version (4), which makes 
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extensive use of previous work of refs. 20 and 21, is the analog to Proposi- 
tion I for the discrete case. 

P r o p o s i t i o n  IV. Let c(v,O) (v~>0) be a continuous, nonnegative, 
bounded, and integrable function such that 

n(0)= dvc(v,O) (27) 

f; p = dv vc(v, 0) (28) 

Then Eq. (4) has a unique solution c(v, t), which is continuous, non- 
negative, bounded, integrable in v for each t, and analytic in t for each v. 
Furthermore, the integrals 

n(t) = dv c(v, t) (29) 

p(t) = ; :  dv vc(v, t) (30) 

f; <b(s, t) = dv e-'Oc(v, t) (31) 

where s is any complex number satisfying Re(s)>/0, all converge and 
satisfy the equations 

d 
~ n ( t )  = - In(t)]  2 (32) 

d 
d--~t P( t )=O (33) 

dt qS(s, t) = I-q~(s, 0 ]  2 - 2q)(s, t) n(t) (34) 

ProoL The existence and uniqueness of a solution c(v, t) which is 
continuous, nonnegative, bounded, integrable in v for each t, and analytic 
in t for each v were first proven in ref. 20. That the solution conserves 
density, i.e., that Eq. (33) holds, is proven, e.g., in ref. 21. By boundedness 
we conclude that there exists a positive constant K such that 

0<~c(v , t )<K,  v>~0, t~>0 (35) 
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The particle number n(t) defined in (29) can be bounded with help of (35) 
and the density conservation as follows, keeping the nonnegativity of the 
solution in mind: 

0 ~<n(t) = @(0, t ) = f o  dvc(v, t) 

dvc(v,t)+ dvvc(v,t)<~K+p (36) 
1 

For any t > 0 let us consider the integrated version of (4) 

c(v, t)=c(v, O) + f~ d~ I~ du c(v-u, ~) c(u, ~) 

-2I~d~c(v ,~) I  ~ du c(u, r) (37) 

Multiplying equation (37) by e ..... , where Re(s)>/0, integrating over v from 
0 to oo and using (29), we obtain 

o dv e .... c( v, t) 

= fo dye .... c(v, O) + fo  dv e-"~' fo dT ;o dU C(t,- u, r) c(u, r) 

- 2 ;o' dv e-*" fl dr c(v, r) n(r) (38) 

where the integrals exists by the bound (35) and the fact that n(r) is bounded 
by (36). We notice that for Re(s)/> 0, (36) implies 

fl d~ fo  dv [e-S"c(v, r)n(r)l <~ f~ dT [n(r)]z < ~ (39) 

f~ dV fo  du le-~%(u, r)l f?  du le-S' ..... 'c(v-u, r)l 

~< fo d~ [n(r)] 2 < oo (40) 

These guarantee that Tonelli's theorem can be applied to Eq. (38), so that 
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the orders of integration can be interchanged to obtain, with the help of 
definition (31), 

�9 ( s , t )=~(s ,O)+  & [ q S ( s , r ) ] ? - 2  & [ ~ ( s , r ) ] n ( r )  (41) 

In particular, when s = 0 this gives, by (29), 

n(t) =n(O) - fod~  [n(r)]  2 (42) 

Differentiation with respect to t proves Eqs. (32) and (34) since the 
integrands are continuous. QED 

The following lemma is the analog of Lemma II. It provides informa- 
tion about the location of the roots of the equation q , ( s )=no+ r, and 
about the behavior of ~b(s) at infinity, which will be needed for the main 
theorem about the continuous case. 

I . emma V. Let the initial data in (4) be twice differentiable with 
respect to v, the second derivative being of bounded variation, and let them 
satisfy 

Ic(v, 0)l < Ae ~L,, 
02 

c(v,O) <Ae-a% -~_vC(V,O) <Ae -~" ( v e R  +) 

(43) 

where A, A are positive numbers. Furthermore, set no=S~ dv c(v, 0) and 
p = ~ ~ dv vc( v, 0) and define 

O(s) = Cb(s, O) = dve-'"c(v, 0), Re(s) > - A  (44) 

Define ~ = f f ( - A ) - n o ,  which is either a positive number or + oo. Then: 

1. The integral S +-~ [~b(s; + is2)-c(O, O)/(s I + is2)] ds, where s~ and 
s2 denote the real and imaginary parts of s, converges for any fixed nonzero 
s, > - A .  The integrand is bounded on the path of integration and is 
O(1/s2) 2 for large Is2[. 

2. For any S I > - - A  we have l imml_~d/(s~+is2)=O. The con- 
vergence is uniform with respect to s~ on any interval - & ~ s ~  < oo with 
6<A.  
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3. For  all T ~ [0, ~ )  the equat ion ~b(s) = no + ~ has a simple root,  call 
it a t ( r ) ,  which increases monotonical ly  to 0 as r decreases to 0, and 
satisfies 

1 
--A < al(T) = - - -  ~ + R~21(~) ~< 0 (45) 

P 

where R~'-~(r) = O(~ 2) as z ~ 0. 

4. All other roots am(r) (m=2, . . . )  of the equat ion ~ b ( s ) = n o + z  are 
complex, and there is a positive 6 such that  they lie to the left of the line 
R e ( s ) =  - 6  for all sufficiently small z. That  is, there exist z2e (0, zt) and 
fie (0, A) such that  Re (am(z ) )<  - 6  ( m = 2 ,  3,...) for Te [0, rz] .  

ProoL  The conditions on the initial cluster distribution c(v, 0) ensure 
that the integral (44) defining ~O(s) converges whenever R e ( s ) > - d .  
Moreover ,  it is an analytic function of s in this domain.  By partial integra- 
tion applied to this integral we obtain 

r  0 ) +  s-2c ' (0 ,  O ) +  s-3c"(O,  O) 

+ s -3  e - ' v  dc"(v, 0), Re(s) > - , 4  (46) 

where the primes indicate partial  differentiations of c(v, 0) with respect to v. 
Writing st = Re(s) and s2 = I m ( s )  we have, by a theorem of Widder  1221 
closely related to the Riemann-Lebesgue  lemma,  

o e - t S ' + ~ s : l " d c " ( v , O ) = o ( I s 2 1 )  as Is21 ~ oo (47) 

uniformly on any interval - v ~< st < ~ of the st axis with v < d. Hence, by 
(46), we find that  

~k(st + is2) -- c(O, O)/(s t + is z) = c'(O, O)/(s L + is2) 2 + o(1/s2) 2 

= O ( 1 / s  2) as I s z l ~ o o  (48) 

uniformly on - v ~< st < oo. The first part  of the iemma now follows, since 
the left-hand side of (48), being analytic in - d  < Re(s) < oo apar t  from a 
pole at the origin, is bounded on the path  of integration. 

The second part  of the lemma also follows directly from (48). 
As s increases through real negative values from - A  to 0, the value 

of ~(s)  decreases from ~t + n o  to no; therefore for each ~ [0, ~ )  the equa- 
tion n o +  ~ -  ~b(s)=0 has a unique root  in ( - A ,  0-], increasing monoton i -  
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cally from - A  to 0 as z decreases from 31 to 0. We denote this root  by 
al(z) .  Since ~k(s) is analytic in a neighborhood of s = 0  and its derivative 
~k'(s) satisfies ~ ' ( 0 ) =  - p ,  it follows by the implicit function theorem that  

1 
a , ( z ) =  - - ~ + O ( ~  2) (49) 

P 

This completes the proof  of the third part  of the lemma. 
To  locate the other roots, we note first that  the definitions of ~b(s) 

[Eq. (44)-1 and of no imply that  I~,(s)l ~< no for Re(s)>1 0, with equality only 
if s = 0 .  Therefore, since no is positive and T nonnegative,  the equat ion 
~b(s) = n o + ~ can have no roots in the closed right-hand half of the s plane, 
other than the root  at s = 0 when r = 0. 

In the strip - A  < Re(s)~<0 there is one real root, as we know from 
part  3 of the lemma,  and there may be complex ones as well. Consider first 
the case when r = 0. There is one root  at s = 0 and the others, as shown 
above, must  lie to the left of the real axis. It  is shown below that the 
number  of such roots in the strip --A/2 < R e ( s ) <  0 is finite. The largest of 
the real parts of the complex roots must  therefore be negative: denote it by 
- 2 6  (if there are no roots in the strip set 6 = A/2). Now consider the case 

> 0 .  Since the positions of the roots depend continuously on T (e.g., 
ref. 18) and there are only a finite number  of them in the relevant part  of 
the complex s plane, we see that  for sufficiently small r all the roots except 
possibly a l (z )  lie to the left of the line R e ( s ) =  - 6 .  

It remains to show that  the number  of roots in the strip 
- A / 2  < R e ( s ) < 0  is finite. Part  2 of the lemma shows that  we can find a 
constant  M such that  [~(s ) l<no for all s in the strip for which 
IIm(s)l > M; since no > 0 and z > 0 the equat ion ~b(s) = no + r can therefore 
have no roots at all outside the part  of the strip where IIm(s)l ~< M. The 
number  of roots inside this par t  of the strip is finite, because the analytic 
function ~ k ( s ) - n o - z  can have only a finite number  of zeros in a finite 
region of the s plane. 

This completes the proof  of the lemma. Q E D  

Now we can state our  theorem concerning asymptot ic  behavior  in the 
cont inuous case. 

T h e o r e m  VI. Let the initial cluster distribution c(v, 0) in (4) satisfy 
the same conditions as in L e m m a  V. Then Eq. (4) has a unique solution 
and this solution c(v, t) has the following asymptot ic  behavior  with 

= v t -  l fixed: 

lim t2c(r t) = ~(r (50) 
t ~ o o  
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where the dynamical scaling function 0(-): R + --* N § is given by 

?'(~) = 1 e-~l/Pl~ (51) 
P 

The convergence is uniform on compact intervals of the positive ~ axis. 

,Drool Solving the differential equations (32) and (34) with initial 
conditions n (0)=no ,  q~(s, 0 ) =  ~O(s), we obtain 

T 2 ~0(s) 
�9 ( s , t ) - - -  r > 0 ,  Re(s) > - A  (52) 

(n o+  r) n o + z -  ~ ( s ) '  

where, as before, 3 means t-1, The inversion formula for the Laplace trans- 
form (31) gives (see, for example, ref. 22) 

( n~ 1 fl  '+i~ d s  e "~ qJ(s)  (53)  
no + ~ - ~ ( s )  

where ?, is any positive number. 
We shall estimate the integral in (53) for values of z in the interval 

[0, %] where T 2 > 0 is defined in Lemma V and we define ~3 = ~ b ( - 6 / 4 ) -  
no > 0 and set r 4 = min{r2, z3 }. These definitions ensure that when ~ lies in 
this interval the denominator in the integrand has no zeros in the strip 
- 6  < Re(s)<6/4:  in the case of a~(z), this is a consequence of the defini- 
tion of 33 and the monotonic behavior noted in part 3 of Lemma V; in the 
case of the other roots a 2 .... it is a consequence of part 4 of Lemma V. 

The conditions of the theorem ensure that ~b(s) is analytic in the 
region Re(s )>  - A ;  consequently the integrand in (53) is meromorphic in 
this region, with poles at the roots of the equation ~k(s) = no + r. By parts 3 
and 4 of Lemma V one of these poles is at the point s = a ~ ( z )  and the 
others, if any, all lie to the left of the abscissa Re(s )=  - 6 .  Moreover, we 
know from part 2 of Lemma V that ~b(s)~ 0 as I m ( s ) ~  +oo, uniformly in 
Re(s) for -6/2  < Re(s )<  7- Hence we may move the contour in (53) to the 
left, obtaining 

no + T~ f-~/2 + ,~ ~(s) 32 ]c(v, /)= 1 dse'" 
2hi -~/2-i~ no + z- -  O(s) 

1 ~,_ q,(s) 
+ ~ni ds e'" (54) 

no  + 3 - ~ , ( s )  

where F is a small circle surrounding the pole s = at(r).  
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By the residue theorem, the second term on the right is equal to the 
residue of the integrand at a~(3), which is 

eO,,,)o Ik'(~ 
--  ~ " ( o , ( z ) )  

The first term, as we show below, has an upper bound Ke -vz/2, where K >  0 
is independent of 3 for 3 ~ [0, 34]. This term therefore goes to 0 in the limit 
v --* ~ ,  and it follows that 

c(~13, l / ' r )  
lim t2c(~t, t ) =  lim ~2 

1 lim e ~''~/~ ~b(al(3)) + 1  lim Ke -~r 
n o ~ O  - 0 ' ( o , ( 3 ) )  n o , - O  

1 e_r by (49) (55) 
P 

In this way the main result (50) is reached. If ~ is restricted to some 
positive interval [ ~ ,  ~2], then we see that the limit in (55) holds uniformly 
on this set of values for ~ as v, t ~ ~ .  

To complete the proof, we estimate the first term on the right of (54). 
We first show that the denominator no + 3 -  ~O(s), call it gT(s), is bounded 
away from zero on the path of integration. For large values of Im(s) 
this follows from par t2  of LemmaV,  which shows that there is a 
number M~ such that qJ(-6/2+iR)<no/2 whenever I21>MI ,  so that 
Ig~(-6/2 +i2)1 > no~2 for these values of).. For smaller values of Im(s), we 
use the fact noted above that there are no zeros of g~(-6/2 + i2) on the 
line with - M ,  ~<2~<M~ for all 3 in [0, 34]. Since Ig,(s)l is a continuous 
function of the two variables 2, 3, its infimum on the closed set 
[ - M ~ ,  M~] x [0, 34] must be attained and must therefore be different 
from zero (since the value 0 is not attained). We denote this infimum by 
groin" Defining # = min{no/2, grnin}, we conclude that 

Ino+T--~k(--6/2+i).)l > ~ > 0  ( ~  [0, T4]) (56) 

A partial integration of the type used in the proof of Lemma V gives 

~O(s) = c(O, O)/s + R~(s) (57) 

822/75/3-4-4 
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where 

so that 

Rl(s )=s  -l e .... c'(v,O)dv 

f? =c'(O,O)/s2+s -z e-'~c"(v,O)dv 

(58) 

(59) 

IR~( -6 /2  + i2)1 ~ Ko/s 

<~ Kt/s% 2 ~ ~ (60) 

with Ko=S~eV6/2Ae-~"dv and K~ = Ic'(0,0)l +S~eV6/ZAe-~Vdv independent 
of r. It follows, using (57), that for Re(s )=  -6/2  

~(s) ~,(s) r 
no+r-~b(s)  no+r (no+r)[no+r-~O(s)] 

e(O, O) 
- (no + r)--~s + Rz(s )  (61) 

where 
Ri(s) r 2 

Rz(s) = + (62) 
n o + z  ( n o + r ) [ n o + r - 0 ( s ) ]  

so that, by (56) and (60), 

Igds) l  < K 2 / s  2 (63) 

the constant K2= Ki/no+ [Ic(0, 0)1 + Ko]2/noI a not depending on z. 
Substituting (61) into the integral to be estimated and using the 

standard resul( -'2} 

1 r - 6 / 2 + i ~  e sv 

~i~i~ |_ 6/2 - i~. ds---Os - (6>0 ,  v > 0 )  (64) 

we obtain 

1 f-a/z+i~ e~lp(s) 1_~ f-6/2+i~ ds 
as = 6/z-i~. no+ T - r  21ti -6/2-i~ eS~ <~e "6/2K (65) 

where 

i (  ) K =  . max R2 - +i).  d2 (66) 
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an integral whose convergence is guaranteed by (63). The bound (66) 
justifies the treatment of the second term in (55) and so the proof of 
Theorem VI is complete. QED 

4. D ISCUSSION 

Theorems III  and VI provide a rigorous proof of the dynamical scaling 
hypothesis for Smoluchowski's coagulation equation with constant coef- 
ficients ak.i, subject to mild conditions on the initial data; it thus confirms 
previous studies O'2'5'6"9-11'13 161 in which this hypothesis was used success- 
fully in a less rigorous way. Unfortunately, owing to our use of the explicit 
solutions of the Smoluchowski equation, or proof cannot be extended to 
the general coagulation equations with nonconstant coefficients (1). There 
is one other case where an explicit solution is known; this is the case 
K(x, y ) = c o n s t - x y .  (23'241 However, our method appears not to work for 
this case c25~ because of the gelation transition at a finite time. 

Our analysis leads to the same asymptotic form in both discrete and 
continuous cases: this is not surprising in view of the fact that the 
continuous equation can be thought of as a continuous approximation 
to the discrete one, whose validity is likely to be better, the larger the 
cluster size/. This asymptotic form is also the same as the one given by 
Friedlander's theory of self-similar spectra (i.e., self-similar cluster-size 
distributions). 

For both discrete and continuous versions our result confirms the 
standard values for the dynamical scaling exponents in Eq. (2), namely 
x =  1, y = - 2 .  These numbers can, of course, be calculated by simpler 
methods. The fact that x = 1 can be seen as a consequence of the fact that 
the mean cluster size 1 " =  ~ / c l / ~  c /=  p/n(t) is, by (18) and the constancy 
of p, asymptotically proportional to the first power of t; the value of y can 
then be deduced from the scaling relation y = - 2 x ,  which is a consequence 
of mass conservation (see, for example, ref. 2). 

Using the above formula for mean cluster size, the asymptotic formula 
for the cluster distribution can be expressed in the form introduced by 
Lifshitz and Slyozov ~z6~ 

cl( t )~ P----~--, "-t/t" (67) 
[1,]2 

The scaling function for the Smoluchowski equation is, however, different 
from the one given by Lifshitz and Slyozov. The Smoluchowski coagulation 
mechanism is not to be confused with the Lifshitz-Slyozov coarsening 
mechanism, t1'26'27~ despite the agreement of the dynamical exponents x, y 
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for d = 3. The Smoluchowski model has no fragmentation, whereas Lifshitz 
and Slyozov consider both coagulation (condensat ion)  and fragmentat ion 
(evaporation). The essential difference between these two mechanisms and 
their physical relevance for solid mixtures and binary fluids were pointed 
out by Binder. t~ 

Finally we point  out that the obvious way of generalizing 
Smoluchowski 's equation,  by including fragmentat ion as well as coagula- 
tion terms, t5"~9~ is not as innocent  as it looks: it can lead to a dramatic 
change in the physics of the model. In a certain sense, the model without 
fragmentat ion investigated here has a phase transi t ion at t = ~ :  al though 
the total mass Z l e t ( t )  at any finite time t is equal to its initial value, the 
individual terms in the sum tend to 0 as t --* 00, so that at t = ov there is 
no longer any mass in clusters of finite size. We may say that at t = ~ ,  
when the system has reached equilibrium, all the mass has gone into a 
cluster or clusters of infinite size. This behavior may be interpreted as a 
phase transi t ion of first order, analogous to the one found in the mass- 
conserving Becker-D6ring equations. ~28~ On the other hand,  if constant  
fragmentat ion is included, the physical (mass-conserving) solution to the 
discrete coagula t ion-fragmentat ion equat ion will in many cases 129J 
approach an equil ibrium having the conserved value for the mass: even at 
t = ~ the total mass in finite clusters is the same as at t = 0 and thus there 
is no first-order phase transition. 
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